资源类型

期刊论文 1664

年份

2024 2

2023 126

2022 157

2021 139

2020 122

2019 101

2018 102

2017 95

2016 66

2015 91

2014 69

2013 65

2012 57

2011 68

2010 58

2009 65

2008 53

2007 60

2006 32

2005 23

展开 ︾

关键词

可持续发展 12

可再生能源 10

节能 10

能源 9

仿真 7

核能 7

能源安全 6

质量控制 6

控制 5

2035 4

新能源 4

智能控制 4

氢能 4

碳中和 4

能源战略 4

能源结构 4

能源转型 4

能源革命 4

节能减排 4

展开 ︾

检索范围:

排序: 展示方式:

Techno-economic assessment of providing control energy reserves with a biogas plant

Ervin Saracevic, David Woess, Franz Theuretzbacher, Anton Friedl, Angela Miltner

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 763-771 doi: 10.1007/s11705-018-1776-x

摘要:

Grid stability is being challenged by the increasing integration of power plants with volatile power generation into the energy system. Power supply fluctuations must be compensated by energy system flexibility. The storability of the energy carrier enables biogas plants to generate power flexibly. In this study, the technical and economic effects of providing positive secondary control energy reserves with an Austrian biogas plant were assessed. The plant’s main focus lies in biomethane production with the option of heat and power generation through combined heat and power (CHP) units. A detailed simulation model of the investigated biogas plant was developed, which is presented in this work. Ex-post simulations of one year of flexible plant operation were conducted with this model. The findings show that the installed biogas storage capacity is sufficient to provide control energy reserves while simultaneously producing biomethane. Profitability of providing control energy reserves largely depends on the prices at the control energy market and on CHP unit start-up costs. A cost efficiency analysis demonstrated that investing in a hot water tank with a volume of 5 m3 for short-term heat storage turned out to be economically viable.

关键词: biogas plant     process simulation     control energy reserves     economic assessment     gas storage    

中国深部地下空间储能的理论和技术挑战 Review

杨春和, 王同涛, 陈海生

《工程(英文)》 2023年 第25卷 第6期   页码 168-181 doi: 10.1016/j.eng.2022.06.021

摘要:

Deep underground energy storage is the use of deep underground spaces for large-scale energy storage, which is an important way to provide a stable supply of clean energy, enable a strategic petroleum reserve, and promote the peak shaving of natural gas. Rock salt formations are ideal geological media for large-scale energy storage, and China is rich in salt rock resources and has a major shortage of energy storage space. Compared with the salt domes in other countries, the salt rock formations in China are typical lacustrine bedded salt rocks characterized by thin beds, high impurity content, and many interlayers. The development of large-scale energy storage in such salt formations presents scientific and technical challenges, including: ① developing a multiscale progressive failure and characterization method for the rock mass around an energy storage cavern, considering the effects of multifield and multiphase coupling; ② understanding the leakage evolution of large-scale deep underground energy storage caverns; ③ understanding the long-term performance evolution of large-scale deep underground energy storage caverns; ④ developing intelligent construction technologies for the deep underground salt caverns used for energy storage; and ⑤ ensuring the long-term function of deep underground energy storage spaces. The solution to these key scientific and technological problems lies in establishing a theoretical and technical foundation for the development of large-scale deep underground energy storage in China.

关键词: Energy reserves     Deep underground energy storage     Bedded rock salt     Salt cavern     Rock mechanics    

板带轧制工艺控制理论概要

张进之

《中国工程科学》 2001年 第3卷 第4期   页码 46-55

摘要:

以最小阻力定律、体积不变条件和秒流量相等条件为内容的经典轧制理论,经试验、演绎形成了较完整的轧制应用技术科学体系,这种体系所反映的是静态规律。在轧制理论发展中引入控制论、信息论、计算机科学等高新技术,对轧制过程进行控制。在轧制理论发展史上,弹跳方程建立之前是以力学为基础建立的经典轧制理论,之后为以力学和控制论为基础建立的基本轧制工艺控制理论。文章提出工艺控制理论概念,是在基本轧制工艺控制理论的基础上建立的新的理论体系,主要内容包括:在连轧张力理论中反映了张力的负反馈,建立了连轧张力理论体系;在厚控过程中,解决扰动的检测问题;在板形理论中,定义了对偶参数,确立了与 厚控理论相似的板形理论体系。

关键词: 连轧过程控制     连轧张力     厚度控制     板形刚度     轧机弹跳方程     综合等储备负荷分配    

以“功能”储备补足“资源”储备——甲醇战略储备替代1/10~1/5的石油战略储备

金涌,陈丙珍

《中国工程科学》 2008年 第10卷 第11期   页码 4-6

摘要:

对世界所有大国而言,石油战略储备是十分重要的。为了满足国家安全的需要,世界不同国际组织如联合国、欧盟等都建议设立3个月的石油战略储备。对于中国而言,这就需要战略储备石油3×107~9×107 t,这需要一个长时间段和大量资金注入才能完成。如果基于“功能”储备补足“资源”储备的一个新理念来思考,这一目标可以较容易地完成。即储备一定百分数的甲醇来替代石油,则国家安全也可以得到保障。

关键词: 功能储备     战略石油储备     甲醇    

Optimal dynamic emergency reserve activation using spinning, hydro and demand-side reserves

S. Surender REDDY,P. R. BIJWE,A. R. ABHYANKAR

《能源前沿(英文)》 2016年 第10卷 第4期   页码 409-423 doi: 10.1007/s11708-016-0431-9

摘要: This paper proposes an optimal dynamic reserve activation plan after the occurrence of an emergency situation (generator/transmission line outage, load increase or both). An optimal plan is developed to handle the emergency, using the coordinated action of fast and slow reserves, for secure operation with minimum overall cost. It considers the reserves supplied by the conventional thermal generators (spinning reserves), hydro power units and load demands (demand-side reserves). The optimal backing down of costly/fast reserves and bringing up of slow reserves in each sub-interval in an integrated manner is proposed. The proposed reserve activation approaches are solved using the genetic algorithm, and some of the simulation results are also compared using the Matlab optimization toolbox and the general algebraic modeling system (GAMS) software. The simulation studies are performed on the IEEE 30, 57 and 300 bus test systems. These results demonstrate the advantage of the proposed integrated/dynamic reserve activation plan over the conventional/sequential approach.

关键词: demand-side reserves     dynamic reserve activation approach     hydro power units     post contingency     sequential reserve activation approach     spinning reserves    

Design and control optimization of energy systems of smart buildings today and in the near future

Shengwei WANG, Wenjie GANG

《工程管理前沿(英文)》 2017年 第4卷 第1期   页码 58-66 doi: 10.15302/J-FEM-2017005

摘要: Buildings contribute to a major part of energy consumption in urban areas, especially in areas like Hong Kong which is full of high-rise buildings. Smart buildings with high efficiency can reduce the energy consumption largely and help achieve green cities or smart cities. Design and control optimization of building energy systems therefore plays a significant role to obtain the optimal performance. This paper introduces a general methodology for the design and control optimization of building energy systems in the life cycle. When the design scheme of building energy systems is optimized, primary steps and related issues are introduced. To improve the operation performance, the optimal control strategies that can be used by different systems are presented and key issues are discussed. To demonstrate the effect of the methods, the energy system of a high-rise building is introduced. The design on the chilled water pump system and cooling towers is improved. The control strategies for chillers, pumps and fresh air systems are optimized. The energy saving and cost from the design and control optimization methods are analyzed. The presented methodology will provide users and stakeholders an effective approach to improve the energy efficiency of building energy systems and promote the development of smart buildings and smart cities.

关键词: Design optimization     Optimal control     Smart building     Energy efficiency    

QPSO-ILF-ANN-based optimization of TBM control parameters considering tunneling energy efficiency

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 25-36 doi: 10.1007/s11709-022-0908-z

摘要: In recent years, tunnel boring machines (TBMs) have been widely used in tunnel construction. However, the TBM control parameters set based on operator experience may not necessarily be suitable for certain geological conditions. Hence, a method to optimize TBM control parameters using an improved loss function-based artificial neural network (ILF-ANN) combined with quantum particle swarm optimization (QPSO) is proposed herein. The purpose of this method is to improve the TBM performance by optimizing the penetration and cutterhead rotation speeds. Inspired by the regularization technique, a custom artificial neural network (ANN) loss function based on the penetration rate and rock-breaking specific energy as TBM performance indicators is developed in the form of a penalty function to adjust the output of the network. In addition, to overcome the disadvantage of classical error backpropagation ANNs, i.e., the ease of falling into a local optimum, QPSO is adopted to train the ANN hyperparameters (weight and bias). Rock mass classes and tunneling parameters obtained in real time are used as the input of the QPSO-ILF-ANN, whereas the cutterhead rotation speed and penetration are specified as the output. The proposed method is validated using construction data from the Songhua River water conveyance tunnel project. Results show that, compared with the TBM operator and QPSO-ANN, the QPSO-ILF-ANN effectively increases the TBM penetration rate by 14.85% and 13.71%, respectively, and reduces the rock-breaking specific energy by 9.41% and 9.18%, respectively.

关键词: tunnel boring machine     control parameter optimization     quantum particle swarm optimization     artificial neural network     tunneling energy efficiency    

Effect of repeated gonadotropin stimulation on ovarian reserves and proliferation of ovarian surface

Linlin LIANG, Bei XU, Guijin ZHU

《医学前沿(英文)》 2009年 第3卷 第2期   页码 220-226 doi: 10.1007/s11684-009-0037-2

摘要: This study aimed to evaluate the effect of repeated ovarian stimulation (OS) on the ovarian follicular population and morphology in female mice and its influence on the embryo’s developmental ability, and the profile of the ovarian surface epithelium (OSE). A total of 75 mice were enrolled in this experiment and randomly assigned into three groups: repeated ovarian stimulated group [ =25; receiving 5 IU pregnant mare serum gonadotrophin (PMSG) and human chorionic gonadotropin (hCG) at 6 day intervals for 5 cycles]; single ovarian stimulated group ( =25; receiving 5 IU PMSG and hCG for 1 cycle), and control group ( =25; without additional treatment). The follicle number at various stages and the morphologies were recorded respectively in the three groups. The harvested oocytes or embryos, cleavage rate, good quality embryo rate, and blastocyst production rate were counted and calculated, and the proliferations of ovarian surface epithelium were evaluated respectively. In the three groups, the single ovarian stimulation treatment significantly increased the mean number of ovarian oocytes or embryos (39.25±10.77 one-cell embryos/female); on the other hand, repeated gonadotropin stimulation obtained the lowest mean number (5.15± 2.81 eggs/female, <0.01). Repeated ovarian stimulation also tended to decrease normal follicles of primary follicles (66.67%) and secondary follicles (72.86%), and got the lowest cleavage rate (67.47%), lowest good quality embryo rate (2.41%), and lowest blastocyst production rate (0). The OSE cells adjacent to the antral follicles and corpus luteum (CL) in the repeated ovarian stimulated group (81.8%) had a significantly higher proliferation rate than the other groups. The proliferation rate of the OSE in the single ovarian stimulated group (56.4%) was significantly higher than that in the control group (37.5%) ( <0.01). In conclusion, single ovarian stimulation may produce more oocytes/embryos. However, repeated gonadotropin stimulation may have a negative effect on the ovarian follicular quality, the number of mature retrieved oocytes, and the embryo quality, even increasing the chance of ovarian cancer.

关键词: gonadotropin-releasing hormone     ovarian reserve     embryo developmental ability     ovarian surface epithelium    

Dynamic contribution of variable-speed wind energy conversion system in system frequency regulation

Yajvender Pal VERMA, Ashwani KUMAR

《能源前沿(英文)》 2012年 第6卷 第2期   页码 184-192 doi: 10.1007/s11708-012-0185-y

摘要: Frequency regulation in a generation mix having large wind power penetration is a critical issue, as wind units isolate from the grid during disturbances with advanced power electronics controllers and reduce equivalent system inertia. Thus, it is important that wind turbines also contribute to system frequency control. This paper examines the dynamic contribution of doubly fed induction generator (DFIG)-based wind turbine in system frequency regulation. The modified inertial support scheme is proposed which helps the DFIG to provide the short term transient active power support to the grid during transients and arrests the fall in frequency. The frequency deviation is considered by the controller to provide the inertial control. An additional reference power output is used which helps the DFIG to release kinetic energy stored in rotating masses of the turbine. The optimal speed control parameters have been used for the DFIG to increases its participation in frequency control. The simulations carried out in a two-area interconnected power system demonstrate the contribution of the DFIG in load frequency control.

关键词: doubly fed induction generator (DFIG)     load frequency control     inertial control     wind energy conversion system (WECS)    

Modeling and control of photovoltaic energy conversion connected to the grid

Rebei NAJET, Ben Ghanem BELGACEM, Hasnaoui OTHMAN

《能源前沿(英文)》 2012年 第6卷 第1期   页码 35-46 doi: 10.1007/s11708-012-0169-y

摘要: This paper presents modeling and control of a photovoltaic generator (PVG) connected to the grid. The parameters of the PVG have been identified in previous work (series and parallel resistance, reverse saturation current and thermal voltage) using Newton-Raphston and the gradient algorithm. The electrical energy from a PVG is transferred to the grid via two static converters (DC/DC and DC/AC). The objective of the proposed control strategy is to maximize energy captured from the PVG. The adapted control law for extracting maximum power from the PVG is based on the incremental conductance algorithm. The developed algorithm has the capability of searching the maximum photovoltaic power under variable irradiation and temperature. To control the DC/AC inverter, an intelligent system based on two structures is constructed: a current source control structure and a voltage source control structure. The system has been validated by numerical simulation using data obtained from the PVG installed in the laboratory research (INSAT, Tunisia).

关键词: photovoltaic generator (PVG)     maximum power point tracker     grid-connected     static converters    

Modeling and control of a permanent magnet synchronous generator dedicated to standalone wind energy

Louar FATEH,Ouari AHMED,Omeiri AMAR,Djellad ABDELHAK,Bouras LAKHDAR

《能源前沿(英文)》 2016年 第10卷 第2期   页码 155-163 doi: 10.1007/s11708-016-0410-1

摘要: The interest for the use of renewable energies has increased, because of the increasing concerns of the environmental problems. Among renewable energies, wind energy is now widely used. Wind turbines based on an asynchronous generator with a wound rotor present the inconvenience of requiring a system of rings and brooms and a multiplier, inferring significant costs of maintenance. To limit these inconveniences, certain manufacturers developed wind turbines based on synchronous machines with large number of pairs of poles coupled directly with the turbine, avoiding using the multiplier. If the generator is equipped with permanent magnets, the system of rings and brooms is eliminated. The control of the permanent magnet synchronous generator (PMSG) can be affected with the implementation of various techniques of control. This paper presented a new approach mainly based on the control strategy of power production system based on the PMSG. In fact, a mathematical model that simulates the Matlab chain was established with the introduction of control techniques, such as direct control of the torque (DTC) to control the load side converter (LSC), the control of the speed of the turbine and the DC-bus voltage ensured by PI regulators. To show the performance of the correctors used, some simulation results of the system were presented and analyzed.

关键词: wind turbine     permanent magnet synchronous generator (PMSG)     converter     proportional-integral (PI)     control     direct control of the torque (DTC)     regulation    

Motion control of multi-actuator hydraulic systems for mobile machineries: Recent advancements and future

Bing XU, Min CHENG

《机械工程前沿(英文)》 2018年 第13卷 第2期   页码 151-166 doi: 10.1007/s11465-018-0470-5

摘要:

This paper presents a survey of recent advancements and upcoming trends in motion control technologies employed in designing multi-actuator hydraulic systems for mobile machineries. Hydraulic systems have been extensively used in mobile machineries due to their superior power density and robustness. However, motion control technologies of multi-actuator hydraulic systems have faced increasing challenges due to stringent emission regulations. In this study, an overview of the evolution of existing throttling control technologies is presented, including open-center and load sensing controls. Recent advancements in energy-saving hydraulic technologies, such as individual metering, displacement, and hybrid controls, are briefly summarized. The impact of energy-saving hydraulic technologies on dynamic performance and control solutions are also discussed. Then, the advanced operation methods of multi-actuator mobile machineries are reviewed, including coordinated and haptic controls. Finally, challenges and opportunities of advanced motion control technologies are presented by providing an overall consideration of energy efficiency, controllability, cost, reliability, and other aspects.

关键词: motion control     electrohydraulic control     energy efficiency     mobile machineries    

Robust nonlinear control via feedback linearization and Lyapunov theory for permanent magnet synchronousgenerator-based wind energy conversion system

Ridha CHEIKH, Arezki MENACER, L. CHRIFI-ALAOUI, Said DRID

《能源前沿(英文)》 2020年 第14卷 第1期   页码 180-191 doi: 10.1007/s11708-018-0537-3

摘要: In this paper, the method for the nonlinear control design of a permanent magnet synchronous generator based-wind energy conversion system (WECS) is proposed in order to obtain robustness against disturbances and harvest a maximum power from a typical stochastic wind environment. The technique overcomes both the problem of nonlinearity and the uncertainty of the parameter compared to such classical control designs based on traditional control techniques. The method is based on the differential geometric feedback linearization technique (DGT) and the Lyapunov theory. The results obtained show the effectiveness and performance of the proposed approach.

关键词: permanent magnet synchronous generator     wind energy conversion system     stochastic     differential geometric     feedback linearization     maximum power point tracking     Lyapunov     robust control    

Performance of PI controller for control of active and reactive power in DFIG operating in a grid-connectedvariable speed wind energy conversion system

Azzouz TAMAARAT,Abdelhamid BENAKCHA

《能源前沿(英文)》 2014年 第8卷 第3期   页码 371-378 doi: 10.1007/s11708-014-0318-6

摘要: Due to several factors, wind energy becomes an essential type of electricity generation. The share of this type of energy in the network is becoming increasingly important. The objective of this work is to present the modeling and control strategy of a grid connected wind power generation scheme using a doubly fed induction generator (DFIG) driven by the rotor. This paper is to present the complete modeling and simulation of a wind turbine driven DFIG in the second mode of operating (the wind turbine pitch control is deactivated). It will introduce the vector control, which makes it possible to control independently the active and reactive power exchanged between the stator of the generator and the grid, based on vector control concept (with stator flux or voltage orientation) with classical PI controllers. Various simulation tests are conducted to observe the system behavior and evaluate the performance of the control for some optimization criteria (energy efficiency and the robustness of the control). It is also interesting to play on the quality of electric power by controlling the reactive power exchanged with the grid, which will facilitate making a local correction of power factor.

关键词: wind power     doubly fed induction generator (DFIG)     vector control     active power     reactive power     maximum power point tracking (MPPT)    

A smooth co-ordination control for a hybrid autonomous power system (HAPS) with battery energy storage

C. K. ARAVIND,G. SARAVANA ILANGO,C. NAGAMANI

《能源前沿(英文)》 2015年 第9卷 第1期   页码 31-42 doi: 10.1007/s11708-015-0347-9

摘要: The standalone hybrid power system constitutes a synchronous generator driven by a diesel engine, renewable energy source (wind) apart from a battery energy storage system. A coherent control strategy to regulate the voltage and frequency of the standalone grid is proposed in this paper. The system is simulated using Matlab/Simulink for preliminary validation and further tested on a laboratory prototype which involves a TMS320LF2407A DSP controller to digitally implement the control strategy. The dynamic behavior of the system is perused through the direct connection of an induction machine. The control strategy is verified for step changes in load and variation in wind power.

关键词: standalone hybrid power system     battery energy storage system (BESS)     power conversion    

标题 作者 时间 类型 操作

Techno-economic assessment of providing control energy reserves with a biogas plant

Ervin Saracevic, David Woess, Franz Theuretzbacher, Anton Friedl, Angela Miltner

期刊论文

中国深部地下空间储能的理论和技术挑战

杨春和, 王同涛, 陈海生

期刊论文

板带轧制工艺控制理论概要

张进之

期刊论文

以“功能”储备补足“资源”储备——甲醇战略储备替代1/10~1/5的石油战略储备

金涌,陈丙珍

期刊论文

Optimal dynamic emergency reserve activation using spinning, hydro and demand-side reserves

S. Surender REDDY,P. R. BIJWE,A. R. ABHYANKAR

期刊论文

Design and control optimization of energy systems of smart buildings today and in the near future

Shengwei WANG, Wenjie GANG

期刊论文

QPSO-ILF-ANN-based optimization of TBM control parameters considering tunneling energy efficiency

期刊论文

Effect of repeated gonadotropin stimulation on ovarian reserves and proliferation of ovarian surface

Linlin LIANG, Bei XU, Guijin ZHU

期刊论文

Dynamic contribution of variable-speed wind energy conversion system in system frequency regulation

Yajvender Pal VERMA, Ashwani KUMAR

期刊论文

Modeling and control of photovoltaic energy conversion connected to the grid

Rebei NAJET, Ben Ghanem BELGACEM, Hasnaoui OTHMAN

期刊论文

Modeling and control of a permanent magnet synchronous generator dedicated to standalone wind energy

Louar FATEH,Ouari AHMED,Omeiri AMAR,Djellad ABDELHAK,Bouras LAKHDAR

期刊论文

Motion control of multi-actuator hydraulic systems for mobile machineries: Recent advancements and future

Bing XU, Min CHENG

期刊论文

Robust nonlinear control via feedback linearization and Lyapunov theory for permanent magnet synchronousgenerator-based wind energy conversion system

Ridha CHEIKH, Arezki MENACER, L. CHRIFI-ALAOUI, Said DRID

期刊论文

Performance of PI controller for control of active and reactive power in DFIG operating in a grid-connectedvariable speed wind energy conversion system

Azzouz TAMAARAT,Abdelhamid BENAKCHA

期刊论文

A smooth co-ordination control for a hybrid autonomous power system (HAPS) with battery energy storage

C. K. ARAVIND,G. SARAVANA ILANGO,C. NAGAMANI

期刊论文